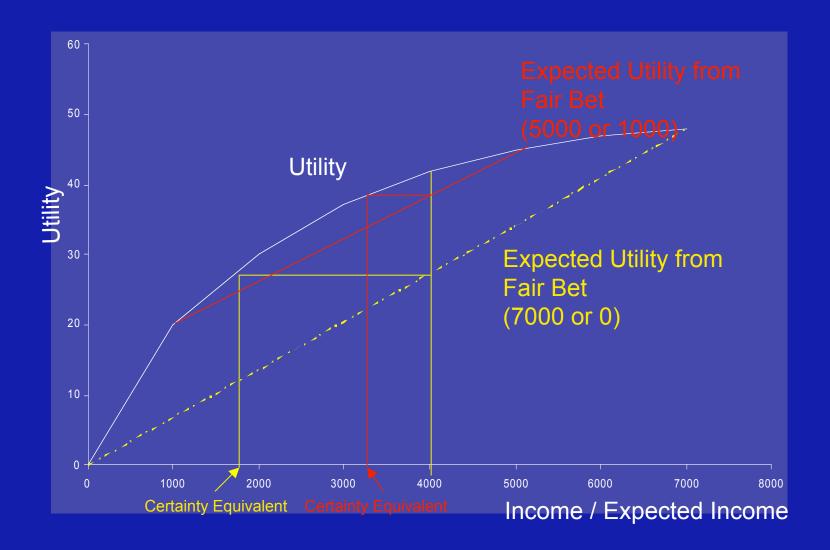
Risk and Uncertainty

Risk

 Lack of certainty about future outcomes. The exact outcomes are known, but the probabilities of alternative outcomes are known

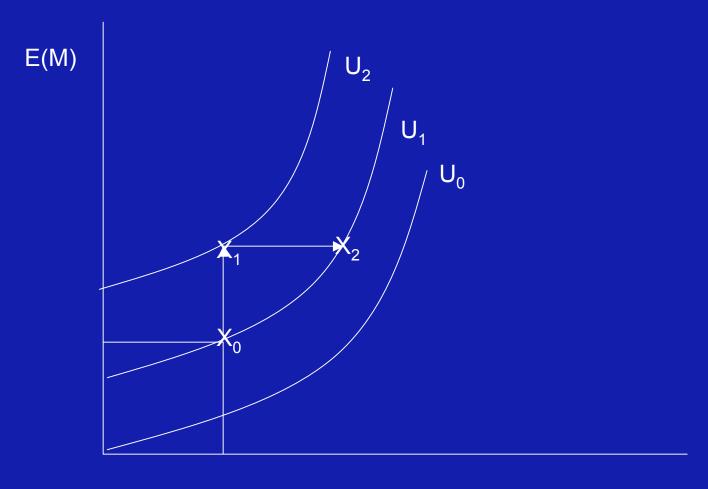
Uncertainty

 Greater lack of certainty about future outcomes. The range of possible outcomes, and the probabilities of future outcomes are all unknown


- Risk Outcomes are unknown, but can estimate probabilities of different outcomes
 - Contingencies x_i (possible States of the world)
 - Probabilities p_i
 - $0 \le p_i \ge 1$
 - $_{i}(p_{i}) = 1$
 - Expected outcome (Expected Value):
 - $\left|-_{i}(p_{i} * x_{i})\right|$

Expected Values of Net benefits under all contingencies

$$-_i p_i * (B_i - C_i)$$


- Need to make sure that contingencies and associated probabilities are appropriately identified.
 - Spreadsheet example

- Projects may increase or decrease level of risk that individuals face
- Risk aversion of individuals
 - ∂U/∂M < 0 (Diminishing Marginal utility of Money)
 - Compare expected utility from fair bets with certain income
 - Spreadsheet examples

- $EU = EU\{E(M), Var(M)\}$
 - $-\delta EU/\delta E(M) > 0$
 - $-\delta EU/\delta Var(M) < 0$
- $Var(M) = _i(M_i M)^2 / (1 N)$
 - $-M = mean of M_i$
 - -N = sample size

Indifference curves of Mean and Variance of Expected Income (M)

Var(M)

So:

- Need to take into consideration effects of project on variance of income. (effect on risk)
- If project increases variance of possible outcomes, this should be discounted from benefits
- Some projects reduce variations of possible outcomes

- Example: Irrigation project
 - Increases expected return, but also increases variability of return
 - Increases probability of loss

Traditional system

- Cost: \$10

– Returns: 50% chance of \$12

50% chance of \$14

– Profits: 50% chance of \$2

50% chance of \$4

- Expected profit: .5(2) + .5(4) = \$3

Irrigation system

- Cost: \$30

– Returns: 50% chance of \$12

50% chance of \$80

– Profits: 50% chance of \$18 loss

50% chance of \$50 profit

- Expected profit: .5(-18) + .5(50) = \$16

- Comparison of systems:
- Traditional system:
 - Expected profit = \$3
 - Variance = 1
- Irrigated system:
 - Expected profit = \$16
 - Variance = 2,312
 - AND 50% CHANCE OF LOSSES

Risk and Uncertainty

Uncertainty

- Future outcomes unknown, and probabilities of alternative outcomes are unknown
- Appropriate analytical tool do address uncertainty –
 Sensitivity analysis
- Vary assumptions in analysis, to see how much the results change
- This is an area where "art" enters into CBA. Good sensitivity analysis requires thinking creatively about possible outcomes that could dramatically alter the results based on the "expected" outcomes